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Abstract. The wave functions of a spheroidal harmonic oscillator without spin-orbit interaction are ex-
pressed in terms of associated Laguerre and Hermite polynomials. The pairing gap and Fermi energy are
found by solving the BCS system of two equations. Analytical relationships for the matrix elements of
inertia are obtained as a function of the main quantum numbers and potential derivative. They may be
used to test complex computer codes developed in a realistic approach of the fission dynamics. Results
given for the 240Pu nucleus are compared with a hydrodynamical model. The importance of taking into
account the correction term due to the variation of the occupation number is stressed.

PACS. 24.75.+i General properties of fission – 25.85.Ca Spontaneous fission – 21.60.-n Nuclear structure
models and methods – 21.10.Pc Single-particle levels and strength functions

1 Introduction

By studying fission dynamics [1] one can estimate the
value of the disintegration constant λ of the exponential
decay law expressing the variation in time of the number
of decaying nuclei. The partial decay half-life T is given by
T = τ ln 2 = 0.693147/λ. The potential energy surface in a
multi-dimensional hyperspace of deformation parameters
β1, β2, . . . , βn gives the generalized forces acting on the
nucleus. Information concerning how the system reacts to
these forces is contained in a tensor of inertial coefficients,
or the effective-mass parameters {Bij}. Unlike the poten-
tial energy E = E(β) which depends on the nuclear shape,
the kinetic energy is determined by the contribution of the
shape change expressed by

Ek =
1

2

n
∑

i,j=1

Bij(β)
dβi
dt

dβj
dt

, (1)

where Bij is the inertia tensor. In a phenomenological ap-
proach based on incompressible irrotational flow, the value
of an effective mass Birr is usually close to the reduced
mass µ = (A1A2/A)M in the exit channel of the binary
system. Here M is the nucleon mass. One may use the
Werner-Wheeler approximation [2].
The microscopic (cranking) model introduced by In-

glis [3] leads to much larger values of the inertia. By as-
suming the adiabatic approximation, the shape variations
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are slower than the single-particle motion. According to
the cranking model, after including the BCS pairing cor-
relations [4,5], the inertia tensor is given by [6,7]

Bij = 2~
2
∑

νµ

〈ν|∂H/∂βi|µ〉〈µ|∂H/∂βj |ν〉

(Eν + Eµ)3
(uνvµ+uµvν)

2+Pij ,

(2)
whereH is the single-particle Hamiltonian allowing to de-
termine the energy levels and the wave functions |ν〉, uν ,
vν are the BCS occupation probabilities, Eν is the quasi-
particle energy, and Pij gives the contribution of the occu-
pation number variation when the deformation is changed
(terms including variation of the gap parameter, ∆, and
Fermi energy, λ, ∂∆/∂βi and ∂λ/∂βi):

Pij =
~

2

4

∑

ν

1

E5
ν

[

∆2 ∂λ

∂βi

∂λ

∂βj

+(εν − λ)2
∂∆

∂βi

∂∆

∂βj
+∆(εν − λ)

(

∂λ

∂βi

∂∆

∂βj
+

∂λ

∂βj

∂∆

∂βi

)

−∆2

(

∂λ

∂βi
〈ν|∂H/∂βj |ν〉+

∂λ

∂βj
〈ν|∂H/∂βi|ν〉

)

−∆(εν − λ)

(

∂∆

∂βi
〈ν|∂H/∂βj |ν〉+

∂∆

∂βj
〈ν|∂H/∂βi|ν〉

)]

.

Similar to the shell correction energy, the total inertia
is the sum of contributions given by protons and neutrons,
B = Bp+Bn. The denominator in eq. (2) is minimum for
the levels in the neighbourhood of the Fermi energy. A
large value of inertia is the result of a large density of
levels at the Fermi surface. As a result, in a similar way to
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the shell corrections, one can observe large fluctuations of
Bii when the deformation or the number of particles are
changed.
In the present work we consider a single-particle model

of a spheroidal harmonic oscillator without spin-orbit in-
teraction for which the cranking approach allows to obtain
analytical relationships of the nuclear inertia. Despite the
limited interest of this simple single-particle model, the
result of the present work may be used to test complex
computer codes developed in a realistic treatment of the
fission dynamics based on the deformed two-center shell
model [8]. The results illustrated for the 240Pu nucleus are
compared with a hydrodynamical model.

2 Spheroidal harmonic oscillator

The shape of a spheroid with semiaxes a, c (c is the semi-
axis along the symmetry) expressed in units of the spher-
ical radius R0 = r0A

1/3 may be determined by a single
deformation coordinate which can be the quadrupolar de-
formation [9] ε = 3(c − a)/(2c + a). The two oscillator
frequencies are expressed as

ω⊥(ε) = ω0

(

1 +
ε

3

)

, ωz(ε) = ω0

(

1− 2ε
3

)

, (3)

and by taking into account the condition of the volume
conservation ω2

⊥ωz = (ω
0
0)

3, where ~ω0
0 = 41A

−1/3 MeV,
the eigenvalues [1] in units of ~ω0

0 are given by

εi = [N+3/2+ε(n⊥−2N/3)][1−ε2(1/3+2ε/27)]−1/3 (4)

in which the quantum numbers n⊥ and nz are
non-negative integers. Their summation gives the main
quantum number N = n⊥ + nz.
In a system of cylindrical coordinates (ρ, ϕ, z) the wave

function [10,11] can be written as a product of the eigen-
functions

ψm
nr (ρ) =

√
2

α⊥
Nm

nrη
|m|
2 e−

η
2L|m|nr (η) =

√
2

α⊥
ψm
nr (η) , (5)

ψnz (z) =
1√
αz
Nnze

− ξ2

2 Hnz (ξ) =
1√
αz
ψnz (ξ) , (6)

Φm(ϕ) =
1√
2π
eimϕ , (7)

where L
|m|
nr are the associated (or generalized) Laguerre

polynomials and Hnz are the Hermite polynomials. The
variables η and ξ are defined by η = ρ2/α2

⊥, ξ =

z/αz, where α⊥ =
√

~/Mω⊥ ≈ A1/6
√

ω0
0/ω⊥, αz =

√

~/Mωz ≈ A1/6
√

ω0
0/ωz. The normalization constants

(Nm
nr )

2 =
nr!

(nr + |m|)!
, (Nnz )

2 =
1√

π2nznz!
(8)

are obtained from the orthonormalization conditions.

3 Nuclear inertia

By ignoring the spin-orbit coupling, the Hamiltonian of
the harmonic spheroidal oscillator contains the kinetic en-
ergy and the potential energy term, V :

V =
1

2
~ω⊥η +

1

2
~ωzξ

2 =
~ω0

0

[

(3 + ε)η + (3− 2ε)ξ2
]

2[27− ε2(9 + 2ε)]1/3 .

(9)

Now we are making some changes in eq. (2), first of all
replacing the deformation β by ε.
One may assume [6,7,10] that only the leading term

of the Hamiltonian, namely the potential written above,
contributes essentially to the derivative,

dH

dε
' dV
dε

. (10)

The contribution of Pij , denoted by Pε for a system with
one deformation coordinate, sometimes assumed to be
negligibly small, will be discussed in the last section.
The derivative is written as

1

~ω0
0

dV

dε
=
3

2

[

f1(ε)η + f2(ε)ξ
2
]

(11)

in which

f1 =
ε(ε+ 6) + 9

[27− ε2(9 + 2ε)]4/3 , (12)

f2 = 2
ε(2ε+ 3)− 9

[27− ε2(9 + 2ε)]4/3 . (13)

For a single deformation parameter the inertia tensor be-
comes a scalar Bε whith a summation in eq. (2) performed
for all states ν, µ taken into consideration in the pairing
interaction.
In order to solve the problem of the pairing interac-

tion [12], we consider the set of doubly degenerate energy
levels {εi} expressed in units of ~ω0

0 . Calculations for neu-
trons are similar to those for protons, hence for the mo-
ment we shall consider only protons.
In the absence of a pairing field, the first Z/2 levels

are occupied, among a total number of nt levels available.
Only few levels below (n) and above (n′) the Fermi en-
ergy are contributing to the pairing correlations. Usually
n′ = n. If g̃s is the density of states at Fermi energy ob-
tained from the shell correction calculation g̃s = dZ/dε,
expressed in number of levels per ~ω0

0 spacing, the level
density is half this quantity: g̃n = g̃s/2. We can choose as
computing parameter, the cut-off energy (in units of ~ω0

0),

Ω ' 1À ∆̃. Let us take the integer part of Ωg̃s/2 = n =
n′. When from calculation we get n > Z/2, we shall take
n = Z/2 and, similarly, if n′ > nt − Z/2, we consider
n′ = nt − Z/2.
The gap parameter ∆ = |G|∑k ukvk and the Fermi

energy with pairing correlations λ (both in units of ~ω0
0)
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are obtained as solutions of a nonlinear system of two BCS
equations:

n′ − n =
kf
∑

k=ki

εk − λ
√

(εk − λ)2 +∆2
, (14)

2

G
=

kf
∑

k=ki

1
√

(εk − λ)2 +∆2
, (15)

with ki = Z/2− n+ 1; kf = Z/2 + n′.
The pairing interaction G is calculated from a continu-

ous distribution of levels leading to 2/G ' 2g̃(λ̃) ln 2Ω/∆̃,
where λ̃ is the Fermi energy deduced from the shell correc-
tion calculations [13] and ∆̃ is the gap parameter, obtained

from a fit to experimental data, usually taken as ∆̃ =
12/
√
A~ω0

0 . The system can be solved numerically by the
Newton-Raphson method. Solutions around magic num-
bers, when∆→ 0, have been derived by Kumar et al. [14].
As a consequence of the pairing correlation, the levels

situated below the Fermi energy are only partially filled,
while those above the Fermi energy are partially empty;
there is a given probability, vk, for each level to be occu-
pied by a quasiparticle or by a hole, uk, given by

v2
k =

1

2

[

1− εk − λ
√

(εk − λ)2 +∆2

]

, u2
k = 1− v2

k . (16)

The following relationship allows to calculate the ef-

fective mass,
~ω0

0

~2 Bε, in units of ~
2/(~ω0

0):

9

2

∑

νµ

〈ν|f1η + f2ξ2|µ〉〈µ|f1η + f2ξ2|ν〉
(Eν + Eµ)3

(uνvµ + uµvν)
2 .

(17)
Matrix elements are calculated by performing some inte-
grals,

〈n′zn′rm′|f1(ε)η + f2(ε)ξ2|nznrm〉 =
δm′mN

m
n′
r
Nm

nrNn′
z
Nnz

×
[

f1

∫ ∞

0

dηη|m|+1e−ηL
|m|
n′
r
(η)L|m|nr (η)

×
∫ ∞

−∞

dξe−ξ2

Hn′
z
(ξ)Hnz (ξ)

+f2

∫ ∞

0

dηη|m|e−ηL
|m|
n′
r
(η)L|m|nr (η)

×
∫ ∞

−∞

dξξ2e−ξ2

Hn′
z
(ξ)Hnz (ξ)

]

.

Next we can use the relationships [15] leading eventually

to an important diagonal contribution
~ω0

0

~2 Bε1,

9

4
δn′

rnr
δm′m

kf
∑

ν=ki

[

f1(2nr + |m|+ 1)

+f2

(

nz +
1

2

)]2
(uνvν)

2

E3
ν

δn′
znz (18)

and two nondiagonal terms,
~ω0

0

~2 Bε2 and
~ω0

0

~2 Bε3:

9

4
δn′

rnrδm′m

∑

ν 6=µ

f2
2

2
(nz + 1)(nz + 2)

× (uνvµ + uµvν)
2

(Eν + Eµ)3
δn′

znz+2 , (19)

9

4
δn′

rnrδm′m

∑

ν 6=µ

f2
2

2
(nz − 1)nz

(uνvµ + uµvν)
2

(Eν + Eµ)3
δn′

znz−2 ,

(20)
where ki and kf have been defined above. In order to per-
form the summations of the nondiagonal terms for a state
with a certain ν (specified quantum numbers nznrm) one
has to consider only the states with µ 6= ν and n′r = nr;
m′ = m for which n′z = nz + 2 or n

′
z = nz − 2, respec-

tively. Finally, one arrives at the nuclear inertia in units of
~

2/MeV by adding the three terms and dividing by ~ω0
0 .

There are several hydrodynamical formulae [16] of the
mass parameters. For a spherical liquid drop with a radius
R0 = 1.2249A

1/3 fm one has

Birr(0) =
2

15
MAR2

0 = 0.0048205A
5/3 ~

2

MeV
. (21)

When the spheroidal deformation is switched on it be-
comes

Birr
ε (ε) = Birr(0)

81

[27− ε2(9 + 2ε)]4/3
9 + 2ε2

(3− 2ε)2 . (22)

The main result of the present study is represented
by eqs. (18)-(20), which could be used to test complex
computer codes developed for realistic single-particle lev-
els, for which it is not possible to obtain analytical re-
lationships. The nuclear inertia of 240Pu calculated with
eq. (21) for a spherical liquid drop and with eq. (22) for
spheroidal shapes is illustrated in fig. 1. One can see how
Birr(0) increases when the mass number of the nucleus is
increased. The irrotational value Birr

ε (ε) monotonously in-
creases with the spheroidal deformation parameter ε. Due
to the fact that in this single-center model the nucleus
only became longer without developing a neck and never
arriving at a scission configuration when the deformation
is increased, the reduced mass is not reached as it should
be in a two-center model [2].
The cranking inertia of the spheroidal harmonic os-

cillator calculated by using the analytical relationships
(18)-(20) and the correction given in the next section
shows very pronounced fluctuations which are correlated
to the shell corrections (calculated with the macroscopic-
microscopic method [13]) plotted at the bottom of fig. 1.

4 Variation of the gap parameter and Fermi

energy with deformation

In fig. 2 we plotted the variation with deformation of the
solutions of BCS equations for Fermi energy λ (bottom)
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Fig. 1. Top: comparison of the effective mass (in units of
~

2/MeV) calculated by using the cranking model for the proton
plus neutron level schemes, only for neutrons, as well as for the
irrotational spheroidal and spherical shapes of 240Pu. Bottom:
shell corrections for neutrons and protons, only for neutrons,
pairing corrections, and shell plus pairing corrections.

and the gap parameter ∆ (top) of the proton and neutron
level schemes for the 240Pu nucleus. The dotted line at the
value 0.117 corresponds to ∆̃. Their derivatives with re-
spect to the deformation parameter are given in fig. 3. For
superdeformed nuclei with ε > 0.5 the oscilllation ampli-
tudes of dλn/dε approach their maximum values of about
2 units. In the same range of deformations the inertia is
also larger as a result of the increased density of levels at
the Fermi surface.

Now we can calculate the correction term as

Pε =
2~2

8

∑

ν

1

E5
ν

[(

∆
dλ

dε

)2

+(εν − λ)2
(

d∆

dε

)2

+ 2∆(εν − λ)
dλ

dε

d∆

dε

−2∆2 dλ

dε
〈ν|dV/dε|ν〉

−2∆(εν − λ)
d∆

dε
〈ν|dV/dε|ν〉

]

.
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Fig. 2. The variation with deformation of the solutions of
BCS equations for Fermi energy λ (bottom) and the gap pa-
rameter ∆ (top) of the proton and neutron level schemes
for the 240Pu nucleus. The energies are expressed in units of
~ω0

0 = 6.597 MeV. The dotted line in the upper part corre-
sponds to ∆̃ = 0.117.
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solutions of BCS equations for Fermi energy λ and the gap
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Fig. 4. Contribution, Pε, to the mass parameter of the occupa-
tion number variation with deformation for the 240Pu nucleus
expressed in units of ~

2/MeV.

The result displayed in fig. 4 shows the important con-
tribution of the neutron level scheme, Pεn (dotted line),
reflecting the larger density of states at the Fermi energy,
compared to the proton term Pεp (dashed line). Their sum
is a positive quantity, contributing to an increase of the nu-
clear inertia. In a dynamical investigation using the qua-
siclassical WKB approximation, the quantum tunnelling
penetrability depends exponentially on the action integral,
in which the integral contains a square root of the product
of mass parameter and deformation energy. This exponen-
tial dependence amplifies very much any variation of the
inertia. Consequently, the term Pij should be considered
in calculations. A similar conclusion was drawn from a
study of a realistic two-center shell model [17].
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